1 9 M ay 2 00 2 132 - avoiding Two - stack

نویسندگان

  • Eric S. Egge
  • Toufik Mansour
چکیده

In [W2] West conjectured that there are 2(3n)!/((n+1)!(2n+1)!) two-stack sortable permutations on n letters. This conjecture was proved analytically by Zeilberger in [Z]. Later, Dulucq, Gire, and Guibert [DGG] gave a combinatorial proof of this conjecture. In the present paper we study generating functions for the number of two-stack sortable permutations on n letters avoiding (or containing exactly once) 132 and avoiding (or containing exactly once) an arbitrary permutation τ on k letters. In several interesting cases this generating function can be expressed in terms of the generating function for the Fibonacci numbers or the generating function for the Pell numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . C O / 0 20 52 06 v 1 1 9 M ay 2 00 2 132 - avoiding Two - stack Sortable Permutations , Fibonacci Numbers , and Pell Numbers ∗

In [W2] West conjectured that there are 2(3n)!/((n+1)!(2n+1)!) two-stack sortable permutations on n letters. This conjecture was proved analytically by Zeilberger in [Z]. Later, Dulucq, Gire, and Guibert [DGG] gave a combinatorial proof of this conjecture. In the present paper we study generating functions for the number of two-stack sortable permutations on n letters avoiding (or containing ex...

متن کامل

1 9 M ay 2 00 2 132 - avoiding Two - stack Sortable Permutations

In [W2] West conjectured that there are 2(3n)!/((n+1)!(2n+1)!) two-stack sortable permutations on n letters. This conjecture was proved analytically by Zeilberger in [Z]. Later, Dulucq, Gire, and Guibert [DGG] gave a combinatorial proof of this conjecture. In the present paper we study generating functions for the number of two-stack sortable permutations on n letters avoiding (or containing ex...

متن کامل

9 M ay 2 00 1 COUNTING OCCURENCES OF 132 IN A PERMUTATION

We study the generating function for the number of permutations on n letters containing exactly r > 0 occurences of 132. It is shown that finding this function for a given r amounts to a routine check of all permutations in S2r . 2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 05C90

متن کامل

M ay 2 00 2 Brownian Bridge and Self - Avoiding Random Walk

We derive the Brownian bridge asymptotics for a scaled self-avoiding walk conditioned on arriving to a far away point n~a for ~a ∈ (Z, 0, ..., 0), and outline the proof for all other ~a in Zd.

متن کامل

N ov 2 00 6 Permutations Avoiding a Nonconsecutive Instance of a 2 - or 3 - Letter Pattern

We count permutations avoiding a nonconsecutive instance of a two-or three-letter pattern, that is, the pattern may occur but only as consecutive entries in the permutation. Two-letter patterns give rise to the Fibonacci numbers. The counting sequences for the two representative three-letter patterns, 321 and 132, have respective generating functions (1 + x 2)(C(x) − 1)/(1 + x + x 2 − xC(x)) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004